Простой химический трюк все еще много может расказать ученым / © Gipher / Автор: Ольга Кузьмина
Добавление мятных конфет Mentos в бутылку колы, вызывающее бурную реакцию и фонтан пены, — уже классическое развлечение, используемое учителями и популяризаторами во всем мире для того, чтобы пробудить у детей интерес к физике и химии. Однако некоторые микропроцессы, происходящие при этом, до сих пор были изучены мало. Авторы статьи, опубликованной в издании Journal of Chemical Education, выяснили, как давление и размер микропор в конфете повлияли на знаменитый трюк. Экспериментальную часть своего исследования команда провела в таких впечатляющих уголках Соединенных Штатов, как Долина Смерти и вершина Пайкс-Пик в Скалистых горах, засняв некоторые результаты на видео.
На базовом уровне объяснение реакции довольно простое: изначально СО2 растворен в жидкости под давлением. Разгерметизация бутылки приводит к изменению давления, в результате чего концентрация газа в жидкости снижается, и часть его выходит в атмосферу.
Чем активнее раствор взаимодействует с окружающим воздухом, тем активнее выходит газ: так, например, будет, если потрясти бутылку. Mentos просто эффектно ускоряют этот процесс. Предыдущие исследования показали, что пористая структура конфет обеспечивает идеальные «ловушки», захватывающие крошечные пузырьки воздуха. Когда одна такая «таблетка» попадает в напиток, ее поверхность обеспечивает отличный контакт с воздухом для растворенного СО2 глубоко внутри бутылки. Образовавшийся газ немедленно устремляется наружу.
До сих пор точный размер этих крошечных пузырьков можно было оценить только на основе микрографических изображений текстурированной оболочки конфеты. При этом с точки зрения воздействия на реакцию это важный вопрос: чтобы углекислый газ покинул раствор, каждый пузырек должен обеспечивать необходимую площадь поверхности для достаточного потока газа. Теоретически они должны быть больше одного микрометра в поперечнике, но более крупные пузырьки также занимают больше места, уменьшая количество областей, в которых начинает стартовать реакция, что тоже потенциально может влиять на протекание процесса.
Так как заснять момент высвобождения газа на таком микроуровне при обычных условиях невозможно, ученые придумали специальное решение. Это потребовало использования ключевых физических взаимосвязей реакции, а именно — таких переменных, как давление и объем.
Томас Кунцлеман, профессор химии из Университета Спринг-Арбор, случайно выяснил, что эта реакция протекает еще драматичнее, если она случилась на больших высотах. Обнаружив это, он, связавшись со своим коллегой из Колорадо Райаном Джонсоном, решил проверить свою гипотезу. Кунцлеман и Джонсон провели серию опытов (и заодно от души повеселились, как можно видеть в видеоблоге Кунцлемана «Невероятные исследования») в самых разных условиях: от Долины Смерти, где высота поверхности земли лежит ниже уровня моря, до вершины в Скалистых горах на уровне 4300 метров.
Они обнаружили, что только давление воздуха не может объяснить полученные наблюдения, оставляя место для выведения более точных переменных, которые способствуют пенообразованию. Комбинируя данные о колебаниях давления воздуха с измерениями массы, потерянной при дегазации, а также со сравнениями между различными конфетами, Кунцлеман и Джонсон вскоре неплохо поняли, почему Mentos — лучший выбор для этого вида деятельности.
Их уравнения предполагают, что эти центры высвобождения газа имеют диаметр от двух до семи микрометров, что обеспечивает баланс и компромисс между размером пузырьков и нужным количеством центров на поверхности конфеты. Заключение хорошо сочетается с существующими моделями, объясняющими реакцию, а также с микрографическими изображениями пор, основанных на этих моделях.
Полученные данные помогут учителям и популяризаторам науки, работающим с детьми, глубже понимать механику процесса, а значит, лучше объяснить ее своим зрителям и показать им мир одновременно более сложным и понятным, привлекая новые поколения разгадывать тайны физики и химии.